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Abstract. The general formula for the surface-wave spectrum of an incompressible viscoelastic
liquid of arbitrary depth is derived and discussed for several limiting cases. For liquids of high
viscosity and long stress relaxation time, the formula includes the contribution of the elastic
response at high frequencies, which is not obtained in the lubrication approximation for the
shallow limit.

1. Introduction

The viscoelastic transition of a liquid of high viscosity from viscous flow at low frequencies
to shear elasticity at high frequencies is reflected not only by the shear waves in the bulk,
but also by surface waves [1, 2]. The properties of the latter, of course, depend on the
depth of the liquid. For surface waves on shallow liquids, whose wavelength is much
longer than the depth of the liquid, usually the lubrication approximation to the Navier–
Stokes equations [3] is employed. However, the result obtained using the lubrication
approximation lacks the contribution of elastic high-frequency waves in thin viscoelastic
films. In general, it is desirable to have a formula describing the complete spectrum of
surface waves on viscoelastic liquidsof arbitrary depth. By comparison with this general
formula, the validity and accuracy of approximate results obtained in various limits can
be assessed. The derivation of the general result (section 2) and the discussion of several
limiting cases (section 3) are the purposes of the present paper. Sections 3.1–3.3 are mostly
pedagogical; the result of section 3.4 is new.

2. Derivation of the general formula

The spectrum of surface waves of small amplitude for a given wavevectork is derived
from the dynamic susceptibilityχzz(k, ω) of the vertical surface displacementuz (figure
1) with respect to an external force (per surface area)Pz acting vertically on the liquid
surface. The dynamic susceptibility is obtained as the ratio of the amplitudes ofuz andPz
for monochromatic plane waves with wavevectork parallel to the surface (see equation (27)
below). This ratio is calculated from the equations of the macroscopic hydrodynamic or
viscoelastic theory. As follows from the theory of linear response [4], the power spectrum
of thermal height fluctuationsuz of a free liquid surface is given by

2kBT χ
′′
zz(k, ω)/ω (1)
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Figure 1. Geometry and notation.

whereχ ′′ denotes the imaginary part ofχ . On the other hand, for surface waves driven by
an external vertical force fieldPz, the expression for the absorbed power per surface area
reads

1

2
(ωPz,0)

2χ ′′zz(k, ω)/ω. (2)

Therefore, in this paper we call the common factorχ ′′zz(k, ω)/ω in (1) and (2) the ‘surface-
wave spectrum’. The calculation ofχzz(k, ω) proceeds as follows.

We start with theansatzfor monochromatic plane waves

v(r, t) = (v̄x(z)ex + v̄z(z)ez) exp
[
i(kx − ωt)] (3a)

P(r, t) = P̄ (z) exp
[
i(kx − ωt)] (3b)

for the solution for the velocity and pressure of the linearized Navier–Stokes equation, which
reads

∂tv = − 1

ρ
∇P + ν 1v. (4)

ν = η/ρ is the kinematic viscosity of the liquid, which is treated as incompressible (with
densityρ). The frequency dependence of the kinematic viscosity of a linear viscoelastic
liquid can be taken into account with no difficulty. Inserting (3a) and (3b) into (4), we
obtain the following equations for̄vx(z) and v̄z(z):

−iωv̄x = −ik(P̄ /ρ)+ ν(∂2
z − k2)v̄x (5a)

−iωv̄z = −∂z(P̄ /ρ)+ ν(∂2
z − k2)v̄z. (5b)

Here the gravitational potential is included in the pressure. Eliminating the pressure terms
yields the equation

(∂2
z − k2)w̄ = −iω

ν
w̄ (6)

for

w̄(z) = ∂zv̄x(z)− ikv̄z(z) (7)

which is the rotation of the two-dimensional flow. The solution of equation (6) is given by

w̄(z) = B cosh(κz)+ C sinh(κz) (8)

with

κ =
√
k2− iω/ν (9)
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and B and C are constants. In general, let (9) be the root with the positive real part.
Combining the continuity equation

ikv̄x + ∂zv̄z = 0 (10)

with (7) and (8), we find the decoupled equation forv̄z(z) as follows:

(∂2
z − k2)v̄z = −ikw̄. (11)

Using the Green function for(∂2
z − k2)

G(z) = k−1 sinh(kz)θ(z) (12)

we can write the general solution of equation (11) as

v̄z(z) =
∑
±
A±e±kz − i

∫ z

0
dz′ sinh[k(z− z′)]w̄(z′). (13)

From the no-slip boundary conditions atz = 0

v̄x(z = 0) = v̄z(z = 0) = 0 (14)

it follows, using (10), that

A± = 0. (15)

For v̄z(z) we thus obtain

v̄z(z) = −i
{
B̂k
(
cosh(kz)− cosh(κz)

)+ Ĉ(κ sinh(kz)− k sinh(κz)
)}

(16)

where

B/B̂ = C/Ĉ = k2− κ2. (17)

For v̄x(z), equation (10) yields

v̄x(z) = B̂
(
k sinh(kz)− κ sinh(κz)

)+ Ĉκ(cosh(kz)− cosh(κz)
)
. (18)

With (16) and (18), using (5a) we obtain for the pressure

P̄ /ρ = −iν
(
B sinh(kz)+ C(κ/k) cosh(kz)

)
. (19)

The coefficientsB̂ and Ĉ need to be determined from the boundary conditions at the
free surface atz = h, which read

σxz = η(∂zvx + ∂xvz) = 0 (20)

and

σzz = −P + 2η ∂zvz = α ∂2
xuz − gρuz + Pz (21)

where

uz = (i/ω)vz|z=h
is the vertical surface displacement (figure 1) and

Pz(x, t) = Pz,0 exp[i(kx − ωt)] (22)

is an external force per area acting on the surface in thez-direction. α denotes the surface
tension, andg is the gravitational force per mass. With theansatz(3), the boundary cond-
itions take the form

∂zv̄x + ikv̄z|z=h = 0 (23)
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and

−(P̄ /ρ)+ 2ν ∂zv̄z + i

ω

(
α

ρ
k2+ g

)
v̄z

∣∣∣∣
z=h
= Pz,0/ρ. (24)

With (16) and (18), the first of these boundary conditions (equation (23)) can be written as

A11B̂ + A12Ĉ = 0 (25)

with coefficients

A11 = 2k2 cosh(kh)− [k2+ κ2
]

cosh(κh) (25a)

A12 = 2kκ sinh(kh)− [k2+ κ2
]

sinh(κh). (25b)

The second boundary condition (equation (24)) yields

A21B̂ + A22Ĉ = Pz,0/ρ (26)

with coefficients

A21 = −iν
[
k2+ κ2

]
sinh(kh)+ 2iνkκ sinh(κh)

+ (k/ω)[(α/ρ)k2+ g](cosh(kh)− cosh(κh)
)

(26a)

A22 = −iν
[
k2+ κ2

]
(κ/k) cosh(kh)+ 2iνkκ cosh(κh)

+ (1/ω)[(α/ρ)k2+ g](κ sinh(kh)− k sinh(κh)
)
. (26b)

Solving the linear equations (25) and (26) forB̂ and Ĉ, we obtain the dynamical suscept-
ibility

χzz(k, ω) = uz/Pz = (i/ω)v̄z(z = h)/Pz,0 (27)

as

χzz(k, ω) = 1

ρω

A11
(
κ sinh(kh)− k sinh(κh)

)− A12k
(
cosh(kh)− cosh(κh)

)
A11A22− A12A21

(28)

with the result

(χzz(k, ω))
−1 = αk2+ gρ + ρν2k3N

D
(29)

where

N = −4ζ [1+ ζ 2] + ζ(4+ [1+ ζ 2]2) cosh(kh) cosh(ζ kh)

− (4ζ 2+ [1+ ζ 2]2) sinh(kh) sinh(ζ kh) (29a)

and

D = ζ sinh(kh) cosh(ζ kh)− sinh(ζ kh) cosh(kh) (29b)

where

ζ = κ/k = (1− iω/(νk2))1/2. (29c)

Equation (29) is the desired general formula. Extracting the static susceptibility

χ0(k) = (αk2+ gρ)−1 (30)

we can write the result (29) in a more compact form as

χzz(k, ω)/χ0(k) =
(

1+ (νk2)2

(ωs(k))2

N

D

)−1

(31)
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where

ωs(k) = ((α/ρ)k3+ gk)1/2 (32)

is the dispersion relation for surface waves on an ideal liquid of infinite depth.
This general result applies to linear viscoelastic liquids, if the kinematic viscosity is

chosen as an appropriate functionν(ω) of frequency. Note thatν enters the dynamic
susceptibility equation (29) not only explicitly but also viaκ (equation (9)). A simple and
convenient linear viscoelastic model is described by

ν(ω) = νs + ν0/(1− iωτ). (33)

The frequency-dependent part of this expression corresponds to Maxwell’s model. The
constant partνs accounts for the effect of viscous damping at high frequenciesωτ � 1.

The frequency dependence of the general expression (29) for givenk depends on a
number of parameters and is very different in different parameter ranges. It is convenient to
use dimensionless quantities. We consider the dimensionless ratio (31) of the dynamic and
static susceptibility as a function of the dimensionless frequency variableω/ωs(k), where
ωs(k) is given by equation (32). This function depends on the dimensionless parameter
kh together with the three additional dimensionless parametersν0k

2/ωs(k), ωs(k)τ and
νs/ν0, which are related to the viscoelastic model equation (33). We now consider several
important limiting cases of these parameters for which very different spectra follow from
the general formula (29).

3. Limiting cases

3.1. Deep liquid(h→∞)
In this limit one obtains from (29) the result

χzz(k, ω) = k/ρ

(ωs(k))2− ω2− iω 4νk2κ/(k + κ) (34)

which is equivalent to equation (21) of reference [2], but of simpler form. According to
this new expression, the ‘damping function’0(k, ω) is simply given by

0(k, ω) = 4νk2κ/(k + κ). (35)

We briefly summarize for the deep limith → ∞ the variation of the frequency spectrum
χ ′′zz(k, ω)/ω with increasing frequency, using the Maxwell model. (The constant background
viscosityνs of expression (33) is not essential and only leads to some additional damping
in that part of the spectrum for whichωτ � 1 holds.) The form of the spectrum at high
viscosity and long relaxation time depends crucially on the value ofkl0, where the length
l0 is related to the surface tensionα and the high-frequency shear modulusG(∞) by

l0 = α/G(∞). (36)

For the Maxwell model,G(∞) is given by relaxation timeτ and hydrodynamic shear
viscosityη0 as

G(∞) = η0/τ. (37)

If kl0 � 1 holds, the high-frequency response is dominated byG(∞) rather than by
α. In this case, after the surface waves have first become overdamped for viscosities
2ν0k

2 > ωs(k), elastic Rayleigh waves appear when the relaxation time exceeds their
frequency, which is slightly lower thanct (∞)k. Here

ct (∞) =
(
G(∞)/ρ)1/2

(38)
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denotes the high-frequency transverse sound velocity. The surface spectrum then consists of
the quasi-elastic line due to the overdamped capillary waves, an inelastic part arising from
the Rayleigh waves, plus a continuum contribution from bulk phonons [2]. Forkl0 � 1,
on the other hand, the surface tension provides the dominant restoring force even in the
slow-relaxation limit, and the viscoelastic effects on the spectrum are weak. This case may
be realized with light scattering from polymeric solutions [1, 5]. In the intermediate case,
kl0 ≈ 1, an interesting pattern of interference between the effect of surface tension and
shear elasticity exists in the limit of slow relaxation [5].

Figure 2. The surface-wave spectrum in dimensionless units for ordinary liquid (constant
viscosity) for different values of the depth parameter:kh = 0.1, 0.3, 1 and 3, as indicated, and
ν0k

2/ωs(k) = 0.1. Dashed line: equation (40) forkh = 0.3. For kh = 0.1 the approximate
result, equation (40), is indistinguishable from the exact result.

3.2. Shallow liquid(h→ 0)

In this case we find, expanding in powers ofh,

χzz(k, ω) = k2h3/3

(αk2+ gρ)k2h3/3− iωη(1+ (h2/5)(9k2− 2iω/ν))+O(h4)
. (39)

To leading order inh this yields

χzz(k, ω) = k2h3/(3η)

−iω + ((α/ρ)k3+ gk)kh3/(3ν)
(40)

which is the result obtained directly using the lubrication approximation [3]. It applies if
both

kh� 1 (41a)

and √
ω

2ν
h� 1 (41b)
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hold. The first of these conditions requires that the depthh of the liquid must be small with
respect to the wavelength in the lateralx-direction, the second that it is small compared
with the penetration depth of oscillating shear flow.

Figure 2 illustrates the transition from the deep- to the shallow-liquid limit. The result
(34) for h = ∞ applies already atkh = 3, while for kh = 0.3 the approximate result (40)
(the dashed line in figure 2) deviates noticeably from the exact formula (29).

Figure 3. The surface-wave spectrum for nearly ideal liquid(ν0k
2/ωs(k) = 10−4) for

kh = 0.01, 0.03, 0.1, 0.3, 1 and 3. Dashed line: equation (40) forkh = 0.03. Forkh = 0.01
the approximate result, equation (40), is indistinguishable from the exact result. The curve for
kh = 3 is indistinguishable from that forkh = ∞.

3.3. Nearly ideal liquid(ν → 0)

For very low viscosityν, the viscous penetration depth becomes very short, and the reverse
of condition (41b) may apply even if (41a) holds. For a shallow liquid, when (41a) holds,
the second condition (41b) may be violated also in the opposite case of very high viscosity
and long relaxation timeτ for the high-frequency elastic response. Before treating the
latter effect, we first consider the low-viscosity limit, for arbitrary values of the depthsh.
Specifically, we assumeν to be small enough for the condition

ω � νk2 (42)

to hold (ν is assumed to be frequency independent in this case, naturally). We then get for
κ (equation (9))

κ = (1− i)
(
ω/(2ν)

)1/2(
1+O(k2/κ2)

)
. (43)

As regards the depthh, we assume that it is much larger than the viscous penetration depth;
that is,

h� (2ν/ω)1/2. (44)
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Neglecting all terms containing a factor exp(−κh) and keeping only the terms of leading
and next-to-leading order in(κ/k), we obtain from (29)

χzz(k, ω) = 1

αk2+ gρ + ρν2(κ4/k) cotanh(kh)(1+ 2k/(κ sinh(2kh)))

≈ (k/ρ) tanh(kh)

(ωs(k))2 tanh(kh)− ω2− (1+ i)
√

2ω3νk2/sinh(2kh)
. (45)

According to this result, the frequency of surface waves is reduced by a factor(tanh(kh))1/2

compared with the case of large depth [6] (see figure 3). For the damping coefficient one
reads off from equation (45) the peculiar result

β =
√

2ωνk2/sinh(2kh). (46)

For (45) to be consistent with assumption (42), the condition

ωs(k)
(
tanh(kh)

)1/2� νk2 (47)

must be fulfilled. The origin of the damping (46) is the dissipation in the boundary layer at
the bottom of the liquid [7], the width of which is equal to the viscous penetration depth.
For deep liquidsh → ∞, only the dissipation in the bulk is left, giving an attenuation
coefficientβ = 4νk2, corresponding to expression (34) fork/κ → 0 [8, 9].

Figure 4. The surface-wave spectrum for shallow viscoelastic liquid forkh = 0.1, ν0k
2/ωs(k) =

102 (103) and ωs(k)τ = 1 (10). (The numbers in brackets are for the dashed line.) Apart
from the quasi-elastic contribution, three elastic resonances are seen, which correspond to
equation (54) forn = 0, 1 and 2.
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Figure 5. The surface-wave spectrum for viscoelastic liquid of intermediate depthkh = 1 with
ν0k

2/ωs(k) = 103 andωs(k)τ = 10.

3.4. Shallow liquid; the elastic limit(ωτ � 1)

We finally discuss the case of high viscosity and long relaxation timeτ in the shallow limit
(41a) for the Maxwell model(νs = 0). We assume that the high-frequency transverse sound
velocity ct (∞), equation (38), is sufficiently large for the condition

ωs(k)(kh)
3/2� ct (∞)k (48)

to hold. Under this condition, the result (40), withν replaced by its hydrodynamic value
ν0, represents the low-frequency response for the Maxwell model. This replacement is self-
consistent since it leads to a relaxation frequency in (40), which is much smaller than the
viscoelastic relaxation rateτ−1, due to condition (48):

ω2
s (k)kh

3/(3ν0)� τ−1. (49)

However, the result (40), which can be obtained by using the lubrication approximation, is
not valid at high frequenciesωτ � 1. The elastic high-frequency part of the response must
be derived directly from (29). As is now shown, it occurs on a frequency scale of the order
of (ct (∞)/h). For the response at such frequencies to be elastic we must assume that the
stress relaxation rate is far below this frequency range; that is,

τ−1� ct (∞)/h. (50)

With the high-frequency form

ν(ω) = (ct (∞))2
−iω

(51)
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of the kinematic viscosity of the Maxwell model, we then obtain forκ, using condition
(41a),

κ = iq with q ≈ ω/ct (∞). (52)

Keeping only the terms of leading order in the expansion of the expression (29) with respect
to kh leads to an elastic part of the dynamical susceptibility given by

χ(el)zz (k, ω) = (k2h/ρ)

/(
ω2
s (k)kh− ω2 qh cos(qh)

qh cos(qh)− sin(qh)

)
. (53)

Under the condition (48), this expression has resonances near

ω = (ct (∞)/h))(π/2)(2n+ 1) for n = 0, 1, 2, . . . (54)

in agreement with the assumption on the frequency scale made above. These resonances
correspond to shear oscillations of an elastic film with a free surface on a rigid substrate, but
with a lateral modulation of long wavelength superimposed. The strength of the resonances
decreases rapidly with increasing ordern (figure 4).

Figure 6. As figure 4, but withkh = 10. The strong line belowω/ωs(k) = 10 is the precursor
of the elastic Rayleigh line which develops forkh→∞.

The elastic parts of the surface-wave spectrum look completely different in the shallow
limit (figure 4) and in the deep liquid (figure 1 of reference [2]). It is interesting to see
how the elastic part of the spectrum changes between these limits when the depthh of
the liquid is varied. Figures 5 and 6 show the cases wherekh = 1 andkh = 10. (The
other parameters are as in figure 4.) With increasing depth the number of elastic resonances
increases. Forkh = 10 (figure 6), there is a strong lowest resonance nearω = 0.95ct (∞)k,
which for h→∞ eventually develops into the contribution of the elastic Rayleigh surface
wave. The higher resonances go over into a continuum.



Surface waves on viscoelastic liquids 7131

4. Conclusions

To summarize, the general formula for the surface-wave spectrumχ ′′zz(ω)/ω of a viscoelastic
liquid of arbitrary depthh has been derived (equation (29)). For an ordinary liquid with
constant viscosity, the result from using the lubrication approximation is obtained in the
shallow limit, where the depthh is small both compared with the lateral wavelength 2π/k

and compared with the viscous penetration depth(2ν/ω)1/2 (figure 2). The formula can
also be applied to nearly ideal liquids of low viscosity, for which it reproduces the known
results for the depth dependence of the surface-wave frequency (figure 3) and damping. For
shallow viscoelastic liquids of high viscosity and long stress relaxation time, in addition
to the quasi-elastic part obtained with the lubrication approximation, the new result for the
contribution from the elastic high-frequency response of the liquid is found. It consists
of resonances corresponding to elastic waves in a thin plate (figures 4–6). It would be of
interest to study the depth dependence of the spectrum of thermal surface fluctuations of
viscoelastic liquids experimentally by means of inelastic surface light scattering [10].
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